Bifurcation and Stability in Nonlinear Dynamical Systems
Ez a könyv szisztematikusan bemutatja a nemlineáris dinamikus rendszerek bifurkációjának és egyensúlyi állapotok stabilitásának helyi elemzésének alapvető elméletét. Eddig nem rendelkeztünk hatékony módszerrel a magasabb rendű szingularitású szinguláris egyensúlyi helyzetekkel rendelkező dinamikus rendszerek stabilitásának és bifurkációjának vizsgálatára.
Például a végtelen egyensúlyú dinamikus rendszerek magasabb rendű szingularitással rendelkeznek, ami drámaian megváltoztatja a dinamikai viselkedést, és a diszkontinuus dinamikus rendszerek hasonló jellemzőivel rendelkezik. A sajátos sajátvektoron lévő egyensúlyi helyzetek stabilitását és bifurkációját, valamint a Fourier-sorozat-transzformáción keresztül a nemlineáris rendszerek spirális stabilitását és az egyensúlyi helyzetek Hopf-bifurkációját mutatjuk be. A magasabb rendű szingularitási egyensúlyok bifurkációját és stabilitását a (2m)-edik és (2m+1)-edik fokú polinomrendszereken keresztül mutatjuk be.
A lokális analízisből kiindulva a végtelen egyensúlyú rendszerek dinamikáját tárgyaljuk. A végtelen egyensúlyú rendszerek kutatása a dinamikus rendszerek és az irányítás új korszakába vezet bennünket.
© Book1 Group - minden jog fenntartva.
Az oldal tartalma sem részben, sem egészben nem másolható és nem használható fel a tulajdonos írásos engedélye nélkül.
Utolsó módosítás időpontja: 2024.11.13 21:05 (GMT)