Értékelés:
Jelenleg nincsenek olvasói vélemények. Az értékelés 2 olvasói szavazat alapján történt.
Course in Analysis, a - Vol. III: Measure and Integration Theory, Complex-Valued Functions of a Complex Variable
"Ez egy nagyszerű könyv egy elsőéves (amerikai) végzős hallgató számára. A könyv egyik szép tulajdonsága, hogy minden problémához teljes megoldásokat tartalmaz, ami hasznos referenciává teszi az önálló tanuláshoz vagy a minősítő vizsgára való felkészüléshez." (Lásd a teljes kritikát)MAA ReviewsAz "A Course in Analysis" harmadik kötetében két olyan témát tárgyalnak, amelyek minden matematikus számára nélkülözhetetlenek: Mérték- és integrációelmélet; és komplex függvényelmélet.
Az első részben a mérhető terek és a mértékterek kerülnek bevezetésre, és bebizonyításra kerül Caratheodory kiterjesztési tétele. Ezt követi az integrál felépítése egy mértékre, különösen az euklideszi térben lévő Lebesgue-mértékre vonatkoztatva. Tárgyaljuk a Radon-Nikodym-tételt és a transzformációs tételt, és nagy gondot fordítunk a konvergencia-tételek alkalmazásokkal való kezelésére, valamint az Lp-térre.
A produktumtereken való integrálás és a Fubini-tétel további téma, valamint a Lebesgue-integrál és a Riemann-integrál közötti kapcsolat tárgyalása. Ezeken a standard témákon kívül foglalkozunk a Hausdorff-mértékkel, függvények és mértékek konvolúcióival, beleértve a Friedrichs-féle mollizálót, abszolút folytonos függvényekkel és korlátos variációjú függvényekkel.
A számelmélet alaptételét is újragondoljuk, és megvizsgáljuk Sard tételét, illetve a Riesz-Kolmogorov-tételt az Lp-térben lévő prekompakt halmazokra. A szöveg előadások kísérőjeként szolgálhat, de önálló tanulásra is használható.
A kötet több mint 275, teljes részletességgel megoldott feladatot tartalmaz, amelyek tovább segítik a hallgatókat.
© Book1 Group - minden jog fenntartva.
Az oldal tartalma sem részben, sem egészben nem másolható és nem használható fel a tulajdonos írásos engedélye nélkül.
Utolsó módosítás időpontja: 2024.11.13 21:05 (GMT)